
How Julia Goes Fast
Leah Hanson

1. Design choices make Julia fast.
2. Design and implementation choices work

together.
3. You should try using Julia.

Main Points

1. What problem is Julia solving?
2. What design choices does that lead to?
3. How does the implementation make it fast?

What problem are we
solving?

(and also programmers)

Julia is for scientists.

Non-professional
programmers who use
programming as a tool.

● Easy to learn, easy to use.
● Good for writing small programs and scripts.
● Fast enough for medium to large data sets.
● Fast, extensible math, especially linear

algebra.
● Many libraries, including in other languages.

What do they need in a language?

Easy and Fast
with lots of library support

i.e. Numpy

How is Julia better than
what they already use?

The Two Language
Problem

i.e. C and Python

You learn Python, and use Numpy.

Fast Numpy code is in C, so you have to learn
that to contribute.

Fast Julia code is in Julia, so domain experts
can write fast Julia libraries.

Two Language Problem

Julia has to be both C and
Python

The Big Decisions

Static-dynamic trade-offs.

Static, compiled, fast

Dynamic, interpreted,
easy

Compiled:
● Compile-time
● Run native code
● No REPL

Implementation

Interpreted:
● No compile-time
● Running parsed code
● Full REPL

Static:
● Static typing
● Static dispatch

Design

Dynamic:
● Dynamic typing
● Dynamic dispatch

● JIT Compilation (implementation)
● Sort-of Dynamic Types (language)
● Dynamic Multiple Dispatch (language)

Specific Julia Design Choices

JIT Compilation

Compile Time Run Time

Run Time

Our compiler needs to be
fast.

But it has access to run-
time information.

The Type System

● Values have types.
● Variables are informally said to have the

same type as the value they contain.

x = 5

x = “hello world”

● Values have types.
● Variables are informally said to have the

same type as the value they contain.

x = 5::Int64

x = “hello world”::String

● Values have types.
● Variables are informally said to have the

same type as the value they contain.

x = 5

x = “hello world”

Concrete Types

● Can be instantiated (i.e. you can make one)
● Determine layout in memory
● Types cannot be modified after creation
● One supertype; no subtypes

type ModInt

 k::Int64

 n::Int64

end

Multiple Dispatch

● Named functions are generic
● Each function has one or more methods
● Each method has a specific argument

signature and implementation

Multiple Dispatch

x = ModInt(3,5)

x + 5

5 + x

function Base.+(m::ModInt, i::Int64)

 return m + ModInt(i, m.n)

end

function Base.+(i::Int64, m::ModInt)

 return m + i

end

class ModInt
 def +(self, i::Int64)
 self + ModInt(i, self.n)
 end
end

monkey patch Base for Int64 + ModInt?

Haskell Type Classes

The Details

JIT Compilation &
Multiple Dispatch

1. Intersect possible method signatures and
inferred argument types

2. Generate code for that

JIT-ed Multiple Dispatch

1. Intersect possible method signatures and
inferred argument types

2. Generate code for that

foo(5)

foo(6)

foo(7)

JIT-ed Multiple Dispatch

With Caching

1. Check method cache for function & inferred
argument types. (If it’s there, skip to step 4.)

2. If not, intersect possible method signatures
and inferred argument types.

3. Generate code for that method and the
inferred argument types.

4. Run the generated code.

JIT Compilation & Types

function Base.*(n::Number, m::Number)
 if n == 0
 return 0
 elseif n == 1
 return m
 else
 return m + ((n - 1) * m)
 end
end

Calling The Function

4 * 5 # => 20

4.0 * 5.0 # => 20.0

Generic Functions

Aggressive Specialization

Code size vs. Speed

Dispatch is Slow
So we should avoid it!

function a(n)
 result1 = b(n)
 n += result1
 r2 = b(n)
 return n + r2
end

function b(n)
 return n + 2
end

function b(n::Int64)
 return n * 2
end

the copy-paste approach

In-Lining

write down the IP to avoid DNS

Devirtualization

function a ignores updates to function b

Issue #265

Boxed/Unboxed

Unboxed:
● Just the bits
● Compiler knows

type
● Could be on stack

or heap or in
register

Boxed:
● type tag + bits
● Compiler needs the

tag to know the
type

● Stored on the heap

A Tale of Two Functions
function a()
 sum = 0
 for i=1:100
 sum += i/2
 end
 return sum
end

function b()
 sum = 0.0
 for i=1:100
 sum += i/2
 end
 return sum
end

Let’s Time Them
julia> @time a()
elapsed time: 9.517e-6 seconds (3248
bytes allocated)
2525.0

julia> @time b()
elapsed time: 2.285e-6 seconds (64
bytes allocated)
2525.0

WHOA! Look at those bytes!
julia> @time a()
elapsed time: 9.517e-6 seconds (3248
bytes allocated)
2525.0

julia> @time b()
elapsed time: 2.285e-6 seconds (64
bytes allocated)
2525.0

Unstable Types and the Heap

Non-concrete types means you must allocate
the boxed value on the heap.

Boxed immutable types mean you must make a
new copy on the heap for each change.

This type instability leads to a lot of allocations.

.section __TEXT,__text,regular,pure_instructions
Filename: none
Source line: 2

push RBP
mov RBP, RSP
push R15
push R14
push R13
push R12
push RBX
sub RSP, 56
mov QWORD PTR [RBP - 80], 6

Source line: 2
movabs RAX, 4308034112
mov RCX, QWORD PTR [RAX]
mov QWORD PTR [RBP - 72], RCX
lea RCX, QWORD PTR [RBP - 80]
mov QWORD PTR [RAX], RCX
mov QWORD PTR [RBP - 56], 0
mov QWORD PTR [RBP - 48], 0
movabs RAX, 4328810048

Source line: 2
mov QWORD PTR [RBP - 64], RAX
mov EBX, 1
mov R15D, 10000

Source line: 4
movabs R12, 4295395472
movabs R13, 4328736592
movabs RCX, 4416084224
movsd XMM0, QWORD PTR [RCX]

julia> code_native(a,())
movsd QWORD PTR [RBP - 88], XMM0
movabs R14, 4295030048
mov QWORD PTR [RBP - 56], RAX
call R12
mov QWORD PTR [RAX], R13
xorps XMM0, XMM0
cvtsi2sd XMM0, RBX
mulsd XMM0, QWORD PTR [RBP - 88]
movsd QWORD PTR [RAX + 8], XMM0
mov QWORD PTR [RBP - 48], RAX
movabs RDI, 4362376736
lea RSI, QWORD PTR [RBP - 56]
mov EDX, 2
call R14

Source line: 3
inc RBX

Source line: 4
dec R15
mov QWORD PTR [RBP - 64], RAX
jne -70

Source line: 6
mov RCX, QWORD PTR [RBP - 72]
movabs RDX, 4308034112
mov QWORD PTR [RDX], RCX
add RSP, 56
pop RBX
pop R12
pop R13
pop R14
pop R15
pop RBP
ret

.section __TEXT,__text,regular,pure_instructions
Filename: none
Source line: 4

push RBP
mov RBP, RSP
xorps XMM0, XMM0
mov EAX, 1
mov ECX, 100
movabs RDX, 4416084592
movsd XMM1, QWORD PTR [RDX]

Source line: 4
xorps XMM2, XMM2
cvtsi2sd XMM2, RAX
mulsd XMM2, XMM1
addsd XMM0, XMM2

Source line: 3
inc RAX

Source line: 4
dec RCX
jne -28

Source line: 6
pop RBP
ret

julia> code_native(b,())

Macros for speed?

Julia has Lisp-style macros.

Macros are evaluated at compile time.

Macros should be used sparingly.

Macros

But how can they make
code faster?

What is Horner’s Rule?

ax2 + bx + c = a*x*x + b*x + c

Too many multiplies!

a*x*x + b*x + c = (a*x + b)*x + c

What is Horner’s Rule?

ax3 + bx2 + cx + d

= a*x*x*x + b*x*x + c*x + d

= (a*x + b)*x*x + c*x + d

= ((a*x + b)*x + c)*x + d

= d + x*(c + x*(b + x*a))

Horner’s Rule as a Macro
evaluate p[1] + x * (p[2] + x * (....)),
i.e. a polynomial via Horner's rule
macro horner(x, p...)
 ex = esc(p[end])
 for i = length(p)-1:-1:1
 ex = :($(esc(p[i])) + t * $ex)
 end
 return Expr(:block, :(t = $(esc(x))), ex)
end

What does calling it look like?
@horner(t,
 0.14780_64707_15138_316110e2,
 -0.91374_16702_42603_13936e2,
 0.21015_79048_62053_17714e3,
 -0.22210_25412_18551_32366e3,
 0.10760_45391_60551_23830e3,
 -0.20601_07303_28265_443e2,
 0.1e1)

Is it fast?
See PR#2987, which added @horner

Used to implement the function erfinv for
finding the inverse of the error function for real
numbers.

4x faster than Matlab
3x faster than SciPy
which both call C/Fortran libraries

Is it plausible?

The compiled Julia methods will have inlined
constants, which are very optimizable.

A reasonable way to implement it in C/Fortran
would involve a (run-time) loop over the array
of coefficients.

Conclusion

1. Design choices make Julia fast.
2. Design and implementation choices work

together.
3. You should try using Julia.

Main Points

Julia is a fun, general-purpose language that
you should try! :)

Leah Hanson
@astrieanna

blog.LeahHanson.us

Leah.A.Hanson@gmail.com

P.S.

